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SECTION I

INTRODUCTION

The problem of vortex breakdown occurring over delta wings at large angles

of attack and in axisymmetric swirling flows in circular pipes has recently

17,19received considerable interest. A number of review articles (Hall1 ' and

Leibovich 31) on the subject have been written and a symposium on concentrated

vortex motions in fluids (Kuchemann 2 7) has been arranged.
40

Peckham and Atkinson were the first to discover the occurrence of vortex

breakdown over delta wings with highly swept leading edges, when such wings were

10 8 52set at large angles of incidence. The work of Elle , Cox , Werle , Lambourne

28 23 9 34and Bryer , Hummel , Earnshaw , and Lowson helped to construct a detailed

picture of the flow field near the breakdown, as shown in Fig 1. When a slender

wing is set at an angle of attack, the flow on the upper surfaces separates

from near the leading edges, forming two shear layers. These layers curve

upward and inboard and eventually roll up into a core of high vorticity. Most

vortex cores have an appreciable axial component of motion and the fluid spirals

around and along the axis. In the core of the leading edge vortex over a delta

wing, velocities two to three times that of the undisturbed stream have been

found. An increase in the angle of attack strengthens the vorticies and eventually

there is an abrupt change in the structure of the vortex with a very pronounced

retardation of the flow along the axis, followed by reversed flow in a region of

limited axial extent. This abrupt change is called "vortex breakdown" or "vortex

bursting."

20Harvey initiated the study of vortex breakdown through a long cylindrical

tube. By varying the amount of swirl that was imparted to the fluid before it

entered the tube, he found that the breakdown was the intermediate stage between

two basic types of rotating flows, those that do and those that do not exhibit



axial velocity reversal. Since then, Kirkpatrick 
2 4 , Chanaud 7 , Sarpkaya4 2,

43 ,4 4

Faler and LeibovichI11 1 2 and Garg1 3 performed the more easily controllable experi-

ments in tubes and presented vast data on vortex breakdown. Two forms of vortex

breakdown predominate, one called "axisymmetric" or "bubble-like" and the other

called "spiral." The type and the shape of the forms depend upon the particular

combination of the Reynolds and circulation numbers (see Fig. 2 for details).

Many analytical and numerical solutions of the Navier-Stokes equations

have been attempted to explain the occurrence of vortex breakdown phenomenon.

Hall 18 and Stewartson and Hall 4 8 attempted to solve the Navier-Stokes equations

by proposing a simplified model for the vortex core formed over a slender delta

wing at incidence by the rolling-up of the shear layer that separates from a

leading edge. The incompressible quasi-cylindrical boundary-layer approximate

momentum integral equations describing the flow in the viscous core of a wing-tip

vortex were solved by Gartshore14'15 , Steiger and Bloom4 7 and Mager3 7. Benjamin3'4

suggested that the inviscid vortex breakdown, like a hydraulic jump is a transition

between two conjugate states of flow. Bossel5 ,6 analyzed the vortex breakdown

flowfield by reducing the equations of motion to simpler sets in four different

regions. Solutions of the steady axisymmetric Navier-Stokes equation for vortex

breakdown in a confined as well as unconfined viscous vortex have been obtained

18 26 16by Hall , Kopecky and Torrance and Grabowski and Berger

Many authors believe that the vortex bursting with a local stagnation of

the axial flow is a direct consequence of hydrodynamic instability with respect

to axisymmetric, non-axisymmetric or antisymmetric infinitesimal disturbances.

Ludweig35 ,3 6 initiated the study of linear hydrodynamic stability concerning

30,31, an ebvc 41swirling flows. Then Leibovich Randall and Leibovich4 , Uberoi, Chow
aan5 1  32 33and Narain 1 , Lessen, Singh and Paillet , Lessen and Pailett , and Singh and

Uberol45 carried out detailed stability analysis on the vortex breakdown.

2



In the forementioned research work concerning various explanations and

interpretations of vortex breakdown, there is considerable overlap between

theoretical predictions and experimental observations. In the following sections,

the mathematical formulation of the vortex flows in cylindrical polar coordinates

(r, 0, z) is given. Solution for the axisymmetric axial flow in trailing line

vortices is obtained. This is imposed as the starting condition at z = 0 to

obtain the solution profiles of full Navier-Stokes equations for z > 0. In

order to study the linear stability analysis the mean flow is also taken as

that of trailing line vortices. Theoretical solutions thus obtained are com-

pared with experimental results and discrepancies pointed out.

3
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SECTION II

MATHEMATICAL FORMULATION

Cylindrical polar coordinate system (r, e, z) are used. The radial,

circumferential and axial components of velocity are denoted by u, v and w

respectively. The unsteady Navier-Stokes equations for incompressible medium

are:

1 aur 1 av aw (
ar r e 9z 

(i)

2

9u u vau au v 2 1a+p 2 u 2 av
2+u 2- +w 2 )-(2)a-t 9r r 90 z -r P- D r + 2 2(~ 2

r r

9 +u + +_!uv + )(V2 v v + 2 9u
at ar rD6 az r p r9e 2 2 (3

r r

+ aw vaw aw _Ik VV2w(4)
- r r 3- + z Pz

2 a 2  2 __

a- a28 i
where V - + - - - +

Dr2 r ar 2 902 z 2arr 0 z

and p, P and v are the pressure, density and kinematic viscosity of the fluid.

Fluid flowing past a lifting wing produces trailing vorticity and this at

some distance downstream, eventually concentrates into two trailing line vortices.

A characteristic feature of a steady trailing line vortex is the existence of

strong axial currents near the axis of symmetry. The link between the azimuthal

and the axial components of motion in vorticies is provided by the pressure; the

radial pressure gradient balances the centrifugal force, and any change in the

azimuthal motion in the axial direction downstream produces an axial pressure

46 38gradient and consequently axial acceleration (see Squire , Newmann

129 50
Batchelor I

, Owen and Uberoi for discussion on trailing vorticies).
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To derive the expressio, for the velocity components in the case of trailing

line vortices, flow fields are assumed to be steady and axisymmetric, such that

the axial variations are smaller than the radial derivatives, i.e.

D W >> u (5)
az r u

We further approximate that the axial velocity w is nearly equal to the free

stream velocity W, then equations (1) to (4) reduce to

1 D (ru) + w 0 (6)r 3r 3z 0(6

22

V_ = 1 p (7)
r p 3r

v 1 2v ;v v (8)

r r

w 1 2E + lw2w 9w~W - - -z' - + )  (9)

r

A new independent variable , is introduced in place of r and is defined as

= Wr 2/4vz (10)

Solution under appropriate conditions is obtained as (see Batchelor and

certain comments by Tam
4 9 and Herron 

21 )

C
v - (1 - e), ()

r

2 2 2c Co__0 Wz - 0 W

w : W- 8 Log Wz e + 8 f(;) -8LW e (12)
8\)z V8vz 8v)z

C22
Po - 8-- (1 -e + 2 ei(4) - 2ei(2 )], (13)

where f() = e-{log r + ei(1) - 0.807) + 2ei(,) - 2ei(2 ),

and ei(Q) = -T d .

5



c is the constant circulation at large radius r and L is a constant depending0

on the induced drag or the initial velocity defect in the presimilarity stage.

Uberoi 50 has shown that the expressions (11) to (13) for v, w and p neglect the

radial and associated axial convection of angular momentum and the radial

velocity component is assumed negligibly small. As a result the trailing

vortex is reduced to a line vortex and thus the approximation may be invalid.

Although the solution represented by (11-13) may not be quite accurate, it is

generally adequate for many purposes. Further studies have assumed this solu-

tion as the starting condition at z = 0 to calculate the subsequent development

of the vortex breakdown. Also, the experimental measurements of the velocity

distribution inside a swirling tube are quite close to those given by (11)

and (12) (see Garg 3).

6



SECTION III

SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

In non-viscous flows, in addition to theorems of Bernoulli and Helmholtz-

Kelvin, Crocco 1 7 developed an interesting result concerning vortex flows.

Euler's equation for inviscid compressible gases can be written as

(3u/nt) - ux(Vxu) + V( u/2) = - Vh + TVs (14)

where u is the velocity vector, and h, T and s are the enthalpy, temperature

and entropy respectively. Making use of Bernoulli theorem equation (14) reduces

to (for steady state)

u x (V x u) = -T(Vs) (15)

Two conclusions can be drawn from (15):

1) An irrotational stationary gas flow is an isentropic motion;

2) If there are entropy changes within the field, vortices (vortex

sheets) will generally appear. Or the vortex flows are non-isentropic,

unless the velocity and vorticity vectors are parallel to each other, a very

special case.

46 .3,4 5
On the basis of inviscid theory, Squire , Benjamin 4

, and Bossel con-

sidered the following differential equation (see Squire and Benjamin for its

derivation)

22
21 - I ± , II =r2dH - k2- (16)

r2  r 3r az2  d

where ' is the Stokes stream function. H is the total head which by Bernoulli's

theorem is a function of i alone and k = rv, the circulation about the z-axis is

also a function of p alone according to Kelvin's theorem. The above-mentioned

authors attempted to obtain solution of (16) in terms of axisymmetric waves.

They regarded the vortex breakdown phenomenon as the existence of a critical

7



state. Vortex flows have been classified as 'supercritical' if the wave can

propagate with phase speeds in the downward direction (c > 0) or subcritical

if the propagation is also possible in the upstream direction (c < 0).

'Critical' flow separates the two classes where c = 0. Benjamin proposed

that vortex breakdown can be explained as a transition between two (supercritical

and subcritical) conjugate states of axisymmetric swirling flows being much

the same in principle as the hydraulic jump in open-channel flow. Leibovich 3 1

points out that solutions of (16) cannot give much information like the onset

or the position of breakdown, or breakdown and transition in the spiral and

bubble forms.

Quasi-cylindrical approximations to (1)-(4) have been introduced by

17,18 48Hall 1
' and Stewartson and Hall . Vortex breakdown was assumed to be

similar to the separation of a two-dimensional boundary layer. They used the

quasi-cylindrical equations in step-by-step calculations. Gartshore 14 ,1 5 and

Mager solved the equations by momentum integral methods by neglecting the

imposed pressure gradient. When a large axial gradient develops in their

solutions, they conclude that the vortex breakdown has occurred. Just as the

two-dimensional boundary-layer approximations break down as soon as the separa-

tion occurs, similarly the quasi-cylindrical approximation are no longer true

the moment infinitely large axial gradients appear. Mager finds that the closed-

form transcendental solutions of the quasi-cylindrical momentum-integral equations

for the flow in the viscous core of a wing-tip vortex have two separate branches

with the same flow force deficiency. Upstream of the discontinuity, the upper

branch solution results in a strongly decelerating flow with a rapidly expanding

core while the lower branch solution (with the same angular momentum) gives

accelerating flow with a substantially larger but slightly contracting core.

These facts together with Sarpkaya's4 2 photographs and observations that the
axisymmetric bubble is always followed by the spiral breakdown, suggest that the

8



spiral breakdown may be the physical manifestation of the discontinuity while

the axisymmetric bubble may be related to the cross-over. However, in words

31
of Leibovich , the inference of structural detail from an analysis containing

no structure, seems an unusually bold step.

Three sets of investigators attempted to solve numerically the full

Navier-Stokes equations. They assumed the flow to be axisymmetric and incom-

pressible. Lavan, Nielsen and Fejer5 3 studied the swirling motion in a cir-

cilar duct, consisting of two smoothly joined sections, (one stationary and

the other rotating with a constant angular velocity) for small and large

values of the Reynolds numbers. The flow reversal occurs on the axis and

near the tube wall and conditions for incipient flow reversal are established.

This study deals with a situation much different from those in vortex break-

down. Kopecky and Torrance2 6 treated a more realistic problem and imposed

initial conditions that resemble vortex breakdown experiments in a tube more

closely. An explicit finite difference procedure is used to integrate time

dependent transport equations. Their results indicate (a) completely confined

eddies can exist even at low Reynolds numbers, (b) sensitivity of eddies to

changes in Reynolds number and swirl and (c) some effects of the upstream

boundary condition. Calculations performed by Grabowski and Berger 1 6 in an

unconfined region are more extensive and have greater special resolution than

those of Kopecky and Torrance. Their solutions exhibit many of the character-

istics of vortex breakdown. Taken together the last two results tell us that

the Navier-Stokes equations do indeed entertain solutions resembling the axisym-

metric bubble form of the vortex breakdown.

9



SECTION IV

HYDRODYNAMIC INSTABILITY

Numerous authors have investigated the stability of plane parallel flows

for many years; however, stability of parallel flows with respect to longitu-

dinal vortex disturbances and transverse wave disturbances in cylindrical

coordinates has only received scant attention. In case of zero axial flow

Rayleigh5 4 derived on an energy consideration the inviscid criterion for the

stability of axisymmetric flows that [d (r2v 2)/dr] > 0. Later Synge 55 showed

that the "Rayleigh Criterion" [(d/dr) (rv)2 ] > 0 is sufficient for stability

even with viscosity. Some general stability criteria for nondissipative swirling

22
flows were derived by Howard and Gupta . They showed that an analogy between

a rotating and a stratified fluid exists for the stability analysis and that an

important determining parameter of stability is a 'Richardson number' based on

the analogue of the density gradient and the shear in the axial flow. Batchelor

and Gill2 presented a detailed analytical treatment for the inviscid instability

of free axisymmetric flow, in particular jets, and obtained the range of various

parameters for which the flow can be unstable. The stability of a potential vor-

tex with a rotating and a non-rotating jet core was analyzed by Lessen, Deshpande

56
and Hadji-Ohanes . They calculated eigen values for different values of the

ratio of the strength of the vortex to the axial velocity and showed that the

potential vortex becomes unstable in the presence of a jet. Uberoi, Chow and

Narain5 1 presented the stability analysis of coaxial rotating jet and Vortex with

different densities and obtained dispersion relation covering a wide range

of configurations.

10



The tip vortex of a laminar flow wing was studied by Singh 
and Uberoi

45

at a sectional lift-to-drag ratio of 60. Downstream of the wing the Jet

rapidly dissipated and a wake developed in the core and intensity of turbulent

vortices decreased. From 13 to 40 chord length periodic oscillations dominated

the velocity fluctuations with little background influence. These instabilities

had a symmetric and a helical mode with wavelength of the same order as the

core diameter. Garg 1 3 in his experimental study of the structure of vortex

breakdown in a tube observed axial and azimuthal velocity fluctuations at

numerous points. It is likely that the oscillations arise from an instability

of the mean flow. He measured the mean axial and azimuthal velocity components

given by

W(r) = W + Ws exp(-r 2) (17)

V(r) = - [l - exp(-8r 2)]. (18)

The parameters q, , and W vary slowly with axial distance. Their

values have been experimentally determined by Garg (see also Leibovich 31).

Figures 3 and 4 show plots of W and V for various values of 0, versus r.

The stability of the mean velocity profiles given by (17) and (18) has been

22 32analyzed by Howard and Gupta , Lessen, Singh and Paillet and Lessen and

33Paillet . To perform the linear stability analysis, equations (1) to (4)

are nondimensionalized with respect to the length scale r and the velocity

scale W given bys

2 12

r. (W/4vz)W_ W - logz + L _ (19)
s 8Vz V 8Vz

If we neglect the terms f() in equation (12) (Lessen, Singh and Paillet3
2

point out that this term is very small under certain conditions), equations
W

(11) and (12) are similar to (17) and (18) when =

ii



We assume

u-u', v - V + V1, w - W + w, p" + p (20)

and {u', v', w', p'} - fiG, H, F, P) (r)exp[i(az - act) + nie] (21)

where P is the mean pressure distribution given by (13) associated with mean

velocity distribution W and V. a and n are axial and azimuthal wave numbers,

c = cr + ici is the complex phase velocity and F, G, H and P are the complex

amplitudes of perturbation. By substituting (20) and (21) into the nondimen-

33sionalized and linearized equations (1) to (4), we get (see Lessen and Paillet3 )

arF + (rG)' + nH - 0 (21)

r2)G + 2rVH - r2P ' = (iR)-  [r(rG')' - (a 2 r2 + n2 + 1) G -2nH] (22)

2 -2 22 2r yH + r(rV)'G + nrP = (iR) [r(rH')' - (a r + n + 1) H - 2nG] (23)

r2yF + r2W'G + a 2r 2P = (iR)- I [r(rF')' - (a 2 r2 + n 2)F] (24)

where a prime denotes d/dr, R = r W /v and y = a(W - c) + nV/r.

Batchelor and Gill 2 discuss the boundary conditions required to integrate (21)

to (24). These are

F(0) -G(0) = H(O) = P(0) = 0 when n -0, 0 1,
F(O) - G(O) = H(0) = P(O) - 0 when n - 1, 2, 3...(integer) (25)

F(-) = F(-) = H(-) = P(-) = 0 for all n. (26)

For the axisymmetric case n = 0, certain general results similar to those of

Rayleigh's theorems for the stability of two-dimensional parallel inviscid

flows could be established as suggested by Howard and Gupta 2 2 . Equations (21)

to (24) when n - 0 reduce to

d d 1 2 rW" - W' 2V(rV' + V) (27)
d-r (r + r)G- [a + r(W - c) r2(W 0 2

Let -3 22
X G/(W - c)2 , 4 - r D(r V2 )

D d/dr , D* d/dr + l/r,

12



then (27) becomes

W1-2
D[(W - c) DXI + (- - W")X - !W'2 (W - c) X

2 --2(W x+ W - c)- X 0 (28)
,

Multiplying (28) by rX and integrating over (r., r2), we obtain

r 2  r2,

(W - c)[ID* Xl2 + a2 1X1 2  rdr + 4 (rW" - W')lX12 rdr

r r

I,, r 2 2 2 (9

rdr 0 (29)
-r 

cr

Starred quantities denote their corresponding complex conjugate. The imaginary

part of (29), if ci Im c > 0, gives

S a2 22
[IDXI + 2  Xl ] rdr + r [ - W'2] W c rdr = 0 (30)

which is impossible if 4 is everywhere > iW'2. Thus, a sufficient condition

for stability is that -IW'2 be everywhere non-negative. Defining a local

Richardson number J(r) by (Figure 5 shows the profiles of J vs r for

various values of 0)

J(r) = (r2V2) (31)r3 W'2rW

the stability condition is J(r) > !. This is similar to Rayleigh's point of

inflexion theorem for two-dimensional parallel-flow instability. Another

result like that of Howard's circle theorem can be established following

25
Kochar and Jain. If we introduce

M - G/(W - c)

into (27), we have

D[(W - c)2 DM] - a2 (W - c)2 M + OM -0 (32)

13



If (32) is multiplied by M, complex conjugate of M and integrated over

(rl, r2 ), then the real and imaginary parts together with certain manipulations

introduced by Howard lead the inequality to
[ ac+ab 2  2 _ ) 2 r2

HC r - a----)2 + ci a-b) f Q rdr + r f IMI2 rdr < 0 (33)

r ***- 2I a<fW- b.
rI  r I

where Q = IM'_ 2 + 2 IMI2 a < W < b.

The result (33) can be shown such that the complex wave velocity for any

unstable mode lies in a semi-ellipse whose major axis coincides with the

diameter of Howard's semi-circle while its minor axis depends on the

Richardson number J. The following inequality

2

[c - 3(a + b)]2 + 2c i -< -(a - b)2  (34)
1 + (1 - 4J)

is satisfied.

The inviscid stability of swirling flows with mean velocity profiles

given by (17) and (18) was studied by Lessen, Singh and Paillet with respect

to infinitesimal non-axisymmetric disturbances. The flow is characterized by

a swirl parameter q which is the ratio of the magnitude of the maximum swirl

velocity to that of the maximum axial velocity. It is found that as the

swirl is continuously increased from zero, the disturbances die out quickly

for a small value of q if n = 1. The results for negative azimuthal modes are

very different. For negative values of n, the amplification rate increases

and then decreases, falling to negative values at q slightly greater than 1.5

for n - -1. The maximum amplification rate increases for increasingly negative

n up to n = -6 (the highest mode investigated) and corresponds to q = 0.85.

For viscous stability theory, Lessen and Paillet calculated both time wise

and space wise growth rates for the lowest three negative non-axisymmetric

modes (n - -1, -2, and -3). The large wave numbers associated with the dis-

turbances at large Inj allow the n - -1 mode to have minimum critical Reynolds

14



number of 16 (q 0.60). The other two modes investigated have minimum

Reynolds numbers on the neutral curve of 31 (n - -2, q - 0.60) and 57 (n - -3,

q = 0.80). For each mode, the neutral stability curve is shown to shift

rapidly towards infinite Reynolds numbers once the swirl becomes sufficiently

large.

1
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SECTION V

CONCLUSION

All the experimental observations indicate that vortex breakdown depend

on two dimensionaless numbers (1) the Reynolds W r /V and (2) the circulationS s

= q/Ws r The axial and swirl velocity components are given by (17) and

(18). Starting with these values for the velocity components at a junction

z = 0, theoretical prediction of the occurrence of axisymmetric 'bubble'

like vortex breakdown for z > 0 is in qualitative agreement with experimental

observations. Linear stability analysis predicts that all the vortex flows

are stable subject to infinitesimal axisymmetric disturbances provided the

Richardson number J = r v 2 > 4. Breakdown has also been correlated withr3W '2 -

tan 0 - (vmax /W) such that the maximum value of upstream of breakdown is

invaribly greater than about 450. In the case of non-axisymmetric disturbances,

the negative azimuthal modes are more unstable than the positive ones.

Numerical experiments have, however, not been able to predict the spiral

form of the breakdown, because it may be excluded by hypothesis by axisymmetric

formulation. The effect of adverse pressure gradient on the vortex breakdown

has also not been studied.
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SECTION VI

RECOMMENDATION

Suggestions for follow-up research: We would like to investigate what

effect the adverse pressure gradient has on the vortex breakdown. In flows

through pipes both Kirkpatrick 24 and Sarpkaya4 2 have observed that there is

a slight positive pressure gradient upstream of the breakdown and a negative

gradient immediately downstream. In flows past ogive cylinders and delta wings

at increasing angle of attack the positive pressure gradient seems to accelerate

the vortex breakdown. To study this, first the expressions for axial and

azimuthal velocity components similar to (17) and (18) have to be obtained as

solutions of the Navier-Stokes equations under the imposed pressure gradient.

One way is to invoke (16) with (18) and find * for given pressure distributions.

Once the questions regarding starting values of v and w are decided, then both

the solutions of the Navier-Stokes can be attempted and the linear stability

analysis subject to axisymmetric and non-axisymmetric disturbances also can be

studied.
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